
1.  Introduction
Precipitation is an essential component of the global water and energy cycles. For this reason, it has long been 
recognized that accurate knowledge of the time, amount, and distribution of precipitation plays a fundamental 
role in understanding the Earth's climate system (Hartmann,  2016). As the largest reservoir of water in this 
system, the oceans receive over 75% of global precipitation and contribute approximately 85% of atmospheric 
water vapor through evaporation (Lagerloef et al., 2010). The difference between precipitation and evaporation 
(also known as the ocean-atmosphere freshwater flux) directly affects the upper ocean temperature, salinity, 
density, stability, and turbulence (Moum & Smyth, 2019; O’Kane et al., 2016; Sallée et al., 2021), This influences 
oceanic and atmospheric circulations and heat content, which regulate climate variability across multiple scales 
(Durack, 2015; Schmitt, 1995). Despite its importance, oceanic precipitation remains one of the least understood 
elements in the Earth's climate system due to the lack of in situ observations over oceans (Kidd et al., 2017; 
Trenberth et al., 2007).

To fill this gap, satellites have played a major role to quantify oceanic precipitation. The precipitation-capable 
spaceborne sensors include infrared (IR), passive microwave (PMW) imagers/sounders, and radars. Since each 
type of sensor has its own strengths and limitations, today's satellite-based precipitation products are built upon 
a multi-sensor approach, which integrates the measurements from a constellation of spaceborne sensors to 
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maximize the accuracy, coverage, and resolution of precipitation estimates on a global scale (Kidd et al., 2021). 
Furthermore, long-term climate records of global precipitation can be achieved through such a multi-sensor 
strategy (Levizzani et al., 2018). In this regard, the Global Precipitation Climatology Project (GPCP) was devel-
oped by merging PMW/IR sensors and rain gauges (over land) to provide this information to the international 
community. For a long time, GPCP linked to the World Climate Research Program and Global Energy and Water 
Experiment activities (Adler et al., 2020).

GPCP was first introduced in the mid-1990s (Arkin & Xie,  1994; Huffman et  al.,  1997), and since then, it 
has undergone several iterations to improve the input data sources, merging algorithms, and resolution (Adler 
et  al.,  2003; Huffman et  al.,  2001,  2023a). GPCP products have been widely used to study the precipitation 
climatology and the hydrologic cycle (e.g., Lagerloef et al., 2010; Yu, 2011). However, validating satellite-based 
precipitation estimates, including GPCP, over oceans remains challenging. The in situ reference data for validation 
are generally limited to rain gauges, which are only available from a small number of atoll/islands sites, moored 
buoys, and research vessels (Bolvin et al., 2021; Bowman, 2005; Pfeifroth et al., 2013; Sapiano & Arkin, 2009). 
Additionally, rain gauges may provide an incomplete representation of precipitation compared to satellite data, 
due to the point sampling nature of gauges relative to satellite grid box estimates that are several kilometers 
wide (Kidd et al., 2021). To overcome data limitations at sea, several other ocean-specific precipitation instru-
ments have emerged, such as ship-based optical disdrometers (Klepp et al., 2018), ship-based motion-stabilized 
radars (Rutledge et al., 2019), and the subsurface Passive Aquatic Listeners (PAL, Ma & Nystuen, 2005; Yang 
et al., 2015).

Different from rain gauge or ship-based sensors, PAL is an underwater acoustic sensor (hydrophone) typically 
mounted on drifting Argo floats (Roemmich et al., 2019), which can collect oceanic rainfall and wind information 
at minute-scale over a large domain. In addition, a PAL has a sampling area similar to the footprint of spaceborne 
sensors, making it more comparable to satellite data. Since 2010, 58 PALs have been deployed over different 
oceans, and their observations were recently reprocessed and made available for use (Bytheway et  al.,  2023; 
Yang et al., 2015). In this study, we leverage this newly available oceanic rainfall data set to validate GPCP daily 
products over the ocean. To our best knowledge, this work represents the most expansive validation of GPCP 
daily data over oceans because it uses the distributed set of in situ observations available from the state-of-the-art 
multiyear PAL database.

2.  Data
2.1.  Passive Aquatic Listeners

PAL is an innovative acoustic sensor, a hydrophone, designed to measure rain rate and wind speed routinely 
over the ocean (J. A. Nystuen et al., 2015; Yang et al., 2015). It collects underwater ambient-noise time series 
at different frequencies and converts them into a multi-frequency (1–50 kHz) spectrum of sound pressure levels 
(SPL). The overall SPL can be attributed to different sources of ocean ambient sound such as raindrops, surface 
wind, wave breaking, marine mammals, and ship traffic. Each of these sound sources has a unique spectral shape 
in terms of its SPL-frequency relation (for more details, see Yang et al., 2015; Ma, 2022). These relationships 
help determine the dominant ambient-noise source for each SPL spectrum, and, in the case of rainfall and surface 
wind speed, its intensity. Once the SPL spectrum is classified as either dominated by rain or wind, the SPL data 
at specific frequencies are used to estimate rain rate and wind speed, respectively. For example, if it is classified 
as rain, the SPL at 5 kHz (SPL5; in dB) is used to estimate rain rate (RR; mm h −1) using a calibrated SPL5 − RR 
relationship. PAL is capable of reliably detecting rain rate of 0.2 mm/hr and has recorded rainfall rates up to 
180 mm/hr over the Eastern Tropical Pacific. The sound of drizzle and light rain is actually the most distinctive, 
so the PAL algorithm performs incredibly well at the lowest rain rates (Yang et al., 2023). At wind speeds greater 
than about 15 m/s, bubbles entrained into the ocean from breaking waves attenuate sound from raindrops hitting 
the ocean surface, so quantitative rain retrievals become impossible beyond this wind speed.

Since 2010, 58 PALs (3 on moorings and 55 on Argo floats) have been deployed during different field campaigns, 
in which the reliability of PAL-measured rain rates and wind speeds has been verified against other in situ 
measurements from the field campaigns (Ma & Nystuen, 2005; Riser et al., 2019). In general, the uncertainty of 
PAL-measured rainfall is about 10% (Yang et al., 2015), which is similar to the uncertainty level of other in situ 
rainfall measurements given the log-normal behavior of rain rate distributions.
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PALs have been mounted on drifting Argo floats and stationary mooring buoys to support recent ocean field 
campaigns, including NASA's Aquarius Mission (J. Nystuen et al., 2011), Salinity Processes in the Upper Ocean 
Regional Study campaigns (SPURS-1 and SPURS-2, E. Lindstrom et al., 2015; E. J. Lindstrom et al., 2019), 
and NOAA's Tropical Pacific Observing System (Smith et al., 2019). The PAL collects data along the drifting 
trajectory of the Argo float. Typically, the Argo float drifts at 1-km depth for approximately 9.5 days between 
the vertical profiling and surface communication cycles, and the attached PAL records rain rate data at 2–9 min 
sampling intervals when rainfall is detected (otherwise, wind speed is recorded). The Argo float typically trav-
erses less than 3 km/day at this depth. PAL has a circular listening area approximately 5 km in diameter when 
drifting at 1-km depth, making it comparable to spaceborne sensors as they have similar sampling footprint sizes 
(Bytheway et al., 2023; Yang et al., 2015). PALs on moorings have been deployed at variable depths (e.g., 1 km 
or a few hundred meters). Their surface sampling diameter is smaller, at scales as about 5× the depth.

Figure 1 shows the trajectories or locations of 58 PALs in the current database, spanning the Pacific, North Atlan-
tic, and tropical Indian Oceans. These PALs were deployed at different times (between 2010 and 2020) and their 
operational period varies (1–4 years), so the number of PALs available at any given time and location is highly 
variable. The rain rate and wind speed observations from these PALs were recently reprocessed into regular 
1-min intervals and made available for use (Bytheway et al., 2023). The data set archive can be accessed through 
NASA EARTHDATA portal (the URL is provided in Data Availability Statement section), and more details of 
PALs (e.g., the ID, operational period, drifting extent) can be found in Data Set S1.

2.2.  GPCP Daily Precipitation Products

The GPCP Version 1.3 (hereinafter referred to as “GPCP v1.3”) is the first-generation GPCP daily product to 
provide 1° gridded precipitation estimates over the entire globe from October 1996 to present (Adler et al., 2017). 
It is based on the One-Degree Daily (1DD) technique, which was detailed in Huffman et al. (2001). This tech-
nique consists of two major parts: (a) the Threshold Matched Precipitation Index (TMPI) algorithm, which was 
used to derive precipitation estimates between 40°N and 40°S from low-earth-orbit and geostationary IR datasets, 
with adjustments made to PMW-derived precipitation occurrence; and (b) the algorithm developed by Susskind 
et al. (1997), which was used to estimate precipitation over latitudes beyond 40° using the TIROS Operational 
Vertical Sounder (TOVS, before 2003) or the Advanced Infrared Sounder (AIRS, since 2003) data. Finally, these 
daily precipitation estimates were calibrated to the GPCP Version 2.3 satellite-gauge monthly product to ensure 
accuracy and consistency (Adler et al., 2020; Huffman, 1997).

The GPCP Version 3.2 (hereinafter referred to as “GPCP v3.2”) aims to improve the accuracy and resolution 
of precipitation estimates by utilizing the increased number of spaceborne sensors and enhanced merging algo-
rithms in the NASA Global Precipitation Measurement (GPM) era. GPCP v3.2 provides daily, global 0.5° grid-
ded precipitation estimates from June 2000 through September 2021 (Huffman et  al.,  2023a). Compared to 
GPCP v1.3, the major difference in GPCP v3.2 is the replacement of TMPI algorithm with NASA's Integrated 
MultisatellitE Retrievals for the GPM mission (IMERG) algorithm (Huffman et al., 2019). IMERG Final Run 

Figure 1.  The trajectories of 58 Passive Aquatic Listeners (PALs) used in this study, on the global precipitation climatology map derived from Global Precipitation 
Climatology Project v3.2 (2001–2020). Different colors are used for individual PALs to enhance visibility. The two white triangles in the zoomed-in inset show the 
fixed locations of PALs (on buoy moorings) that were deployed in the tropical Eastern Pacific during SPURS-2.
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precipitation estimates are used between 55°N and 55°S, while TOVS/AIRS based precipitation estimates are 
employed at higher latitudes. These precipitation estimates were then calibrated to the new GPCP v3.2 monthly 
product (Huffman et al., 2023b) that uses the Merged CloudSat, NASA TRMM (Tropical Rainfall Measuring 
Mission), and NASA GPM climatological precipitation product (MCTG, Behrangi & Song, 2020) over the mid- 
and high-latitudes oceans and an updated Tropical Composite Climatology (TCC, Adler et  al.,  2009; Wang 
et al., 2014) over the tropical oceans for climatological calibration of the GPCP. In addition, GPCP v3.2 contains 
a diagnostic data field, the probability of liquid phase (PLP, %), which accompanies the precipitation estimates 
to inform the precipitation phase.

The GPCP v3.2 daily product became available in 2022 with the intention of eventually replacing GPCP v1.3 
(Huffman et al., 2023a). While GPCP v1.3 has been widely used and discussed in many climate-, ocean-, and 
water-related studies (e.g., Arabzadeh et al., 2020; Masunaga et al., 2019; Yu, 2019), the validation of GPCP v3.2 
is rarely done, especially over oceans due to its recent release and limited reference observations over oceans. 
The following analyses will be conducted in a comparative manner, with a focus on GPCP v3.2 and its relative 
performance compared to GPCP v1.3.

3.  Methodology
The PAL data are matched to the GPCP 1° (v1.3) and 0.5° (v3.2) grids at daily intervals. Each 1-min PAL rain 
sample is assigned to a GPCP grid based on its sampling location. All 1-min PAL data samples within a given 
GPCP grid are then averaged across the daily time window to compute the daily averaged rain rate from PAL. This 
matching and averaging procedure is applied to each PAL, resulting in 58 paired PAL-GPCP daily data series. 
The drifting PALs are unlikely to traverse multiple GPCP grid boxes in a day, as Argo floats typically move less 
than 3 km/day when drifting at a 1-km depth (Lebedev et al., 2007; Ollitrault & Colin de Verdière, 2014). Our 
evaluation is limited to liquid precipitation (i.e., rainfall), so the paired PAL-GPCP data with a PLP value (from 
GPCP v3.2) below 100 are excluded from the subsequent analyses. Approximately 0.8% of the total daily data 
samples (397 days) are removed, mainly from the PALs deployed around the Pacific Coast of North America; see 
Figure S1 in Supporting Information S1).

For each PAL, the paired PAL-GPCP daily data are accumulated monthly, and then the daily and monthly data 
are averaged through the PAL's operational period to calculate the multi-year mean monthly and daily rainfall. 
We compare these paired daily, monthly, and multi-year mean PAL-GPCP estimates, and evaluate the perfor-
mance of GPCP in terms of rain detection and rain rate estimation. For rain detection (daily scale only), we 
calculate the contingency table statistics including the probability of detection (POD), false alarm ratio (FAR), 
and Heidke  skill score (HSS) based on a rain/no-rain detection threshold of 0.5 mm/day. For rain rate estima-
tion, we use relative bias (RB), root-mean-square error (RMSE), normalized root-mean-square error (NRMSE), 
and the Pearson correlation coefficient (CC). These four metrics are computed either unconditionally (using all 
PAL-GPCP data including zeros) or conditionally (excluding zeros; i.e., for “hits” only).

We also group the PALs into six regions based on the ocean and latitudes where they are deployed (as shown 
in Figure 1): (a) 4 PALs in the extratropical North Pacific (ETNP); (b) 20 PALs in the tropical Northeastern 
Pacific (TNEP); (c) 6 PALs in the tropical Southeastern Pacific (TSEP); (d) 18 PALs in the subtropical North 
Atlantic (STNA); (e) 3 PALs in the tropical North Indian Ocean (TNIO); and (f) 7 PALs in the tropical North-
western Pacific (TNWP). The evaluation results will be summarized using this grouping to understand the 
region-dependent performance of GPCP.

To investigate GPCP's daily performance as a function of rainfall intensity, we calculate the evaluation metrics 
under various rain detection thresholds (1, 2, 4, …, 256 mm/day). We combine all the PAL-GPCP daily data 
for this analysis to ensure sufficient data samples. In addition, two probability distribution functions (PDF), the 
precipitation occurrence PDF (PDFc) and volume PDF (PDFv) are also computed, following the method detailed 
in Li et al. (2013).

4.  Results
4.1.  Comparison of Multi-Year Mean

Figure 2 compares the multi-year mean rain rates obtained from the two GPCP products and PALs. The GPCP esti-
mates are highly correlated with in situ observations, showing the reliability of GPCP products in characterizing 
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rainfall climatology over oceans. The difference between the two GPCP versions is generally small. While GPCP 
v3.2 has slightly improved the underestimation bias compared to GPCP v1.3, it has introduced additional varia-
bility, resulting in slightly larger RMSE and lower CC values. Despite the overall similarity to v1.3, GPCP v3.2 
has region-dependent changes. For example, v3.2 has consistently increased multi-year mean rain rates over the 
TNWP and decreased multi-year mean rain rates at the TNEP. Furthermore, the region-dependent visualization 
in Figure 2 highlights that both GPCP versions have significantly underestimated rainfall over the TSEP, which 
will be further discussed below.

4.2.  Seasonality and Monthly Evaluation

GPCP v1.3 and v3.2 perform similarly in representing the seasonality and intra-annual variations of rainfall 
over most regions (Figures 3a, 3c, and 3e–3f), and there are no consistent relative improvements in GPCP v3.2 
at monthly scale. For example, GPCP v3.2 better captures the seasonality in the second half of the year over the 
TNIO (Figure 3e), but its overestimation bias at the TNWP is further increased during the summer (Figure 3c, 
also see Table S1 in Supporting Information S1).

Figure 2.  Scatterplots comparing the multi-year mean rain rates (mm/day) estimated by (a) Global Precipitation Climatology 
Project (GPCP) v1.3 and (b) GPCP v3.2 against Passive Aquatic Listener (PAL) observations. Each data point corresponds to 
one PAL, and the color indicates its group by region.

Figure 3.  Intra-annual distributions of monthly rainfall estimated from Global Precipitation Climatology Project (GPCP) v1.3, GPCP v3.2 and Passive Aquatic 
Listener (PAL) over different regions (as shown in Figure 1). The comparison includes the mean, and interquartile range (IQR, i.e., the difference between 25% and 75% 
quantile, [Q1, Q3]) estimates of monthly rainfall, which are calculated from N PALs within each region. Here, N represents the number of PALs.
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On the other hand, the GPCP estimates significantly differ from PAL observations in the TSEP and ETNP, as 
shown in Figures 3b and 3d. Specifically, the two GPCP products consistently underestimate rainfall by about 
60% (see Table S1 in Supporting Information S1) throughout all months in the TSEP. This is likely due to the 
known limitation of PMW/IR sensors in detecting light and/or shallow convective tropical rainfall, which results 
in a substantial amount of undetected rain (Behrangi et al., 2012; Schumacher & Houze, 2003). For the ETNP, 
the discrepancy between GPCP and PAL is most noticeable during winter months (November–February) in 
high-latitude areas (beyond 40°N; see the additional PAL-by-PAL analysis in Figure S2 in Supporting Informa-
tion S1), with GPCP estimates being considerably higher than PAL observations (RB exceeds 100%, see Table 
S1 in Supporting Information S1). This is likely because they are actually measuring two different things in this 
region: GPCP estimates total precipitation (liquid + solid), with a diagnostic variable PLP to inform the liquid 
fraction based on ancillary surface temperature, humidity, and pressure reanalysis data (Huffman et al., 2023a); 
the PALs and associated algorithms, however, have only been designed for quantifying liquid rainfall to date 
(though quantifying snowfall is a future research possibility). This comparison highlights the challenge of accu-
rately measuring wintertime rainfall with GPCP, as its PLP diagnostic scheme seems to be overestimating the 
liquid precipitation fraction.

4.3.  Daily Rainfall Detection and Estimation Skills

Figure 4 presents the spatial maps of daily evaluation metrics for GPCP products, with detailed statistics provided 
in Table S2 in Supporting Information S1. Compared to the previous version (left panels in Figure 4), GPCP v3.2 
(right panels in Figure 4) shows remarkable improvement at daily scale. For rainfall detection (Figures 4a–4c 
and 4g–4i), it consistently reduces FAR and thus increases HSS (also see Table S2 in Supporting Information S1). 
After detection, it further improves rain rate estimation with an increased CC at most locations (Figures  4f 
and 4l). In addition, visual comparison of the bias maps (Figures 4d and 4j) suggests that GPCP v3.2 generally 
overestimates rain rates while GPCP v1.3 is dominated by underestimation. These relative changes are largely 
attributed to the incorporation of IMERG Final Run into GPCP v3.2. It suggests that the more direct use of PMW 
information through IMERG in GPCP V3.2 daily product, results in the observed improvement over GPCP v1.3 
that uses TMPI algorithm instead of IMERG.

The rain detection ability of GPCP v3.2 appears to vary across different ocean regions as summarized by HSS 
(Figure 4i). The product demonstrates the best detection skills over the tropical North Pacific, where it has the 
highest probability of detection (POD > 0.6) and lowest false alarm rates (FAR < 0.4). As it extends toward 
higher latitudes, either its POD decreases over the North Atlantic (with an IQR of 0.44–0.51, see Table S2 in 
Supporting Information S1) or FAR notably increases over the North Pacific (with an IQR of 0.60–0.62, see 
Table S2 in Supporting Information S1), resulting in degraded detection skills of GPCP v3.2 in these regions. 
Furthermore, GPCP v3.2 shows its lowest detection potential over the TSEP and North Indian Ocean, where it 
has minimal POD and HSS values.

Once rainfall is detected, GPCP v3.2 estimated daily rain rates correlate well with the PAL data (with a CC greater 
than 0.5, Figure 4l) in most areas, except for the TSEP. The conditional estimation bias shows a mixed pattern 
with both negative and positive values in the tropical oceans, while it tends to be dominated by overestimation at 
higher latitudes, for example, the North Atlantic and the North Pacific (see Figure 4j). This overestimation bias 
peaks in the North Pacific, which is consistent with the monthly results as shown in Figure 3d.

Similar to Figure 3, Figure 4 also highlights the difference of the rainfall estimates from GPCP and PAL over 
the TSEP and ETNP, but with more insights. For TSEP, there appears to be more as a “detection” issue since 
the GPCP and PAL data are barely correlated, exhibiting both low POD and high FAR. In contrast, the ETNP 
is plagued by an overestimation problem, which results in high POD and high FAR. Although the exact reason 
needs to be further addressed and is outside the scope of this study, this result shows the large uncertainty of 
precipitation measurements over the two regions.

Figure  5 further shows the improvement of GPCP v3.2 over the prior version as a function of daily rainfall 
intensity. The PDFs (Figures 5a and 5b) indicate that the prior version of GPCP has underestimated the occur-
rence of both light (<2 mm/day) and heavy rainfall (>20 mm/day), and overestimated the contributions from 
medium rainfall (4–16 mm/day) in terms of both rain occurrence and volume. In contrast, the PDFs of GPCP 
v3.2 agree very well with those of PALs, pointing to the success of this new product in accurately representing 
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Figure 4.  Spatial maps of (a, g) probability of detection, (b, h) false alarm ratio, (c, i) Heidke skill score; and conditional (d, j) relative bias, (e, k) normalized 
root-mean-square error, and (f, l) Pearson's correlation coefficient for daily Global Precipitation Climatology Project (GPCP) v1.3 (left panels) and GPCP v3.2 (right 
panels) estimates against Passive Aquatic Listeners (PALs). The circles represent the drifting end location of PALs, and rain detection threshold is 0.5 mm/day.
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the full spectrum of rainfall over oceans. GPCP v3.2 shows better rainfall detection skills across all rain intensities 
(Figure 5c), especially during heavy rainfall (note the drop of HSS for GPCP v1.3 when rain rate exceeds 8 mm/
day). For those detected (i.e., “hits”) events, GPCP v3.2 tends to overestimate rainfall under various intensities 
while GPCP v1.3 tends to largely underestimate it. The correlation decreases with increased rain rates, but the 
correlation value for GPCP v3.2 is consistently higher (better) than v1.3 by about 0.16.

5.  Conclusions
Satellite precipitation products such as GPCP have long served as valuable sources of oceanic precipitation 
information, which is critical for our understanding of the climate and weather systems, global water and energy 
cycles, and upper ocean processes. Prior to this study, our knowledge of GPCP precipitation estimation perfor-
mance over oceans was limited due to insufficient in situ observations. With recent advances in oceanic observing 
technology, an increasing number of PALs have been deployed in global oceans to collect minute-scale oceanic 
rainfall data with a surface sampling area similar to spaceborne sensors. These PALs, mostly drifting at 1-km 
depth along with Argo floats plus a several others on subsurface moorings, cover a broad expanse of ocean 
areas and many years of time, providing us with an unprecedented opportunity to validate satellite precipitation 
estimates over oceans. Using 58 PALs as a reference Bytheway et al. (2023) reviewed IMERG, CMORPH, and 
PDIR-Now, while this study evaluates the GPCP daily products, including the widely used GPCP v1.3 and the 
newly released GPCP v3.2. Through a suite of evaluation metrics, we compare the two GPCP products and assess 
their performance as a function of time scale, region, and rainfall intensity. To the best of our knowledge, this is 
the first study to validate GPCP daily products using a comprehensive in situ oceanic data set of PALs.

GPCP v1.3 and v3.2 perform similarly at multi-year scale. Their multi-year mean rainfall estimates are highly 
correlated with PAL observations (CC of ∼0.9) with only slight underestimation (7.8% for v1.3% and 3.9% for 
v3.2). This demonstrates their reasonable performance in characterizing rainfall climatology over oceans and a 
slight improvement at multi-year time scales from v3.2. The two versions also capture well the seasonality and 
intra-annual variations of rainfall over most oceans (e.g., the TNEP, TNWP, STNA, and TNIO) with comparable 
performance. Given that the two daily products, GPCP v1.3 and v3.2, have been calibrated respectively to the 
monthly GPCP v2.3 and v3.2, the multi-year to monthly bias estimates presented in this study also apply to those 
monthly products.

Figure 5.  Comparison of (a) probability distribution function by occurrence (PDFc), (b) probability distribution function by volume (PDFv), (c) rainfall detection 
skills (false alarm ratio and Heidke skill score), and (d) estimation metrics (relative bias and correlation coefficient) as a function of daily rainfall intensity for Global 
Precipitation Climatology Project products.
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When evaluated at daily scale, GPCP v3.2 remarkably outperforms the previous version (v1.3) in terms of rain 
occurrence and rain intensity. Compared to GPCP v1.3, GPCP v3.2 reduces FAR and thus improves HSS. It 
also consistently increases CC at most locations. The conditional analysis, which evaluates GPCP's performance 
as a function of rain intensity, further indicates that GPCP v3.2 consistently exhibits improved skill at different 
intensities. Its estimated PDF for rainfall occurrence and volume closely align with those from PALs, whereas 
GPCP v1.3 underestimates the occurrence of both light (<2 mm/day) and heavy rainfall (>20 mm/day) and over-
estimates the contributions from medium rainfall (4–16 mm/day).

Our evaluation highlights two regions, the TSEP and ETNP, where both versions of GPCP products exhibit simi-
lar performance and show noticeable differences from PAL observations at multiple time scales. Although the 
precise causes require detailed analysis outside the scope of this study, the present work highlights the challenges 
of accurately measuring precipitation with GPCP in these two regions.

This study provides valuable insights into the performance of GPCP daily products over oceans using in situ 
observations from 58 PALs across several oceanic regions. With its demonstrated improved performance over its 
predecessor, GPCP v1.3, we strongly recommend users to switch to GPCP v3.2. It is also important to recognize 
that these PALs are still limited in time and spatial coverage and do not cover the entire global ocean, especially 
in the southern part. The deployment of additional PALs would certainly increase the opportunity to further 
evaluate satellite precipitation products, which is needed to understand how best to use them and how to guide 
their improvements.

Data Availability Statement
GPCP v1.3 daily data can be obtained from the NOAA National Centers for Environmental Information (NCEI) as 
part of NOAA Climate Data Record (CDR) Program at https://www.ncei.noaa.gov/data/global-precipitation-cli-
matology-project-gpcp-daily/access/. GPCP v3.2 daily data can be accessed from the NASA Goddard Earth 
Sciences Data and Information Services Center (GES DISC) at https://disc.gsfc.nasa.gov/datasets/GPCPDAY_3.2/
summary. The PAL data set archive is currently available at https://downloads.psl.noaa.gov/psd3/cruises/PAL/, 
and will be also available at NASA ERATHDATA portal at https://doi.org/10.5067/GPMGV/PAL/DATA101.
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